Multiplexed temporal coding of electric communication signals in mormyrid fishes.
نویسندگان
چکیده
The coding of stimulus information into patterns of spike times occurs widely in sensory systems. Determining how temporally coded information is decoded by central neurons is essential to understanding how brains process sensory stimuli. Mormyrid weakly electric fishes are experts at time coding, making them an exemplary organism for addressing this question. Mormyrids generate brief, stereotyped electric pulses. Pulse waveform carries information about sender identity, and it is encoded into submillisecond-to-millisecond differences in spike timing between receptors. Mormyrids vary the time between pulses to communicate behavioral state, and these intervals are encoded into the sequence of interspike intervals within receptors. Thus, the responses of peripheral electroreceptors establish a temporally multiplexed code for communication signals, one consisting of spike timing differences between receptors and a second consisting of interspike intervals within receptors. These signals are processed in a dedicated sensory pathway, and recent studies have shed light on the mechanisms by which central circuits can extract behaviorally relevant information from multiplexed temporal codes. Evolutionary change in the anatomy of this pathway is related to differences in electrosensory perception, which appears to have influenced the diversification of electric signals and species. However, it remains unknown how this evolutionary change relates to differences in sensory coding schemes, neuronal circuitry and central sensory processing. The mormyrid electric communication pathway is a powerful model for integrating mechanistic studies of temporal coding with evolutionary studies of correlated differences in brain and behavior to investigate neural mechanisms for processing temporal codes.
منابع مشابه
Central mechanisms of temporal analysis in the knollenorgan pathway of mormyrid electric fish
Mormyrid electric fish communicate using pulse-type electric organ discharges (EODs). The fine temporal structure of the waveforms of EODs varies widely throughout the 200 or more species of mormyrids. These signals carry information about the species, the sex and even the individual identity of the signaller. Behavioral experiments have shown that some species of fish are capable of using this...
متن کاملPeripheral sensory coding through oscillatory synchrony in weakly electric fish
Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the recepto...
متن کاملDifferences in electrosensory anatomy and social behavior in an area of sympatry between two species of mormyrid electric fishes.
Sensory systems play a key role in social behavior by mediating the detection and analysis of communication signals. In mormyrid fishes, electric signals are processed within a dedicated sensory pathway, providing a unique opportunity to relate sensory biology to social behavior. Evolutionary changes within this pathway led to new perceptual abilities that have been linked to increased rates of...
متن کاملBrain evolution triggers increased diversification of electric fishes.
Communication can contribute to the evolution of biodiversity by promoting speciation and reinforcing reproductive isolation between existing species. The evolution of species-specific signals depends on the ability of individuals to detect signal variation, which in turn relies on the capability of the brain to process signal information. Here, we show that evolutionary change in a region of t...
متن کاملSensory coding and corollary discharge effects in mormyrid electric fish.
Weakly electric fish use their electrosensory systems for electrocommunication, active electrolocation and low-frequency passive electrolocation. In electric fish of the family Mormyridae, these three purposes are mediated by separate classes of electroreceptors: electrocommunication by Knollenorgan electroreceptors, active electrolocation by Mormyromast electroreceptors and low-frequency passi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 13 شماره
صفحات -
تاریخ انتشار 2013